Evaluation of the LOCO program on the SPS

J. Wenninger SL/OP

- What is LOCO and how does it work ?
- Test of LOCO on SPS data
- Summary and MD requests

LOCO principle (i)

\square The LOCO program (Linear Optics from Closed Orbits) was written by J. Safranek (then @ BNL).

LOCO uses as input the orbit response matrix \boldsymbol{M} giving the change in beam position with changes in steering magnet kicks,

$$
\mathbf{u}=\mathbf{M} \theta
$$

where

- \mathbf{u} is the beam position vector, $\mathbf{u}^{\boldsymbol{\top}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{N}}\right)$
- θ is the kick vector, $\theta^{\top}=\left(\theta_{x 1}, \theta_{\mathrm{x} 2}, \ldots, \theta_{\mathrm{y} 1}, \theta_{\mathrm{x} 2}, \ldots \theta_{\mathrm{yM}}\right)$
\square LOCO analyzes a measured response $M^{\text {meas }}$ and tries to calibrate the linear optics of the machine by adjusting the model response $M^{\text {mod }}$ via BPM gains, corrector calibration factors,...

LOCO principle (ii)

\square For linear optics, \boldsymbol{M} can be written

- Closed orbit :
$\boldsymbol{M}_{\mathrm{ij}}=\left(\beta_{\mathrm{i}} \beta_{\mathrm{j}}\right)^{1 / 2} \cos \left(\left|\mu_{\mathrm{i}}-\mu_{\mathrm{j}}\right|-\pi \mathrm{Q}\right) /(2 \sin (\pi \mathrm{Q}))$
- Trajectory:

$$
\begin{aligned}
& \boldsymbol{M}_{\mathrm{ij}}=\left(\beta_{\mathrm{i}} \beta_{\mathrm{j}}\right)^{1 / 2} \sin \left(\mu_{\mathrm{i}}-\mu_{\mathrm{j}}\right) \\
& \boldsymbol{M}_{\mathrm{ij}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\mathrm{i}}>\mu_{\mathrm{j}} \\
& \mu_{\mathrm{i}}<\mu_{\mathrm{j}}
\end{aligned}
$$

- \boldsymbol{M} holds a lot of optics information, but in a complicated "form".
- A measurement of \boldsymbol{M} is simple and non-destructive.

LOCO method (i)

\square LOCO step 1 : build a vector V with elements

$$
\mathrm{V}_{\mathrm{k}}=\left(M_{\mathrm{ij}}^{\text {meas }}-M_{\mathrm{ij}}^{\text {mod }}\right) / \sigma_{\mathrm{i}} \quad \text { for all } \mathrm{i}, \mathrm{j}
$$

where :

- meas and mod refer to the measured and the machine model response matrices.
${ }^{-} \sigma_{\mathrm{i}}$ is the $\mathrm{i}^{\text {th }} \mathrm{BPM}$ error/noise RMS.
LOCO goal : vary $M_{\mathrm{ij}}{ }^{\text {mod }}$ in order to minimize the norm of vector \mathbf{V},
$\|\mathbf{V}\|=\Sigma \mathbf{V}_{\mathbf{k}}{ }^{2}=$ minimum \sim (no. elements of $\mathbf{V}-$ no. free parameters)

LOCO method (ii)

\square LOCO step 2 : evaluate the dependence of V on various parameters c_{I} and define the (linearized) sensitivity matrix S

$$
S_{k l}=\partial V_{k} / \partial c_{l}
$$

Example:

- If $\mathrm{C}_{\boldsymbol{l}}$ is a BPM gain : $\boldsymbol{S}_{k l}=-M_{i j}{ }^{\text {mod }} / \sigma_{i}$
- If c_{1} is a corrector calibration : $\boldsymbol{S}_{k l}=M_{i j} \bmod / \sigma_{i}$
- If c_{1} is a MAD parameter : $\boldsymbol{S}_{\boldsymbol{k} l}=\left(\boldsymbol{M}_{i j}{ }^{\bmod }\left(\mathrm{c}_{\mathrm{l}}+\Delta \mathrm{c}_{\mathrm{l}}\right)-\boldsymbol{M}_{i j}^{\bmod }\left(\mathrm{c}_{1}\right)\right) /\left(\Delta \mathrm{c}_{\mid} \sigma_{\mathrm{i}}\right)$
- ...

LOCO method (iii)

\square LOCO step 3 : solve for the parameter increment vector $\Delta \mathbf{c}$:

$$
\mathbf{V}+\Delta \mathbf{V}=\mathbf{V}+\mathbf{S} \Delta \mathbf{c}=\mathbf{0}
$$

- This equation is identical to an orbit correction equation!
- Can be solved with the same least-square algorithms : SVD, MICADO..
- Matrix S is actually rank deficient (singular) :

There are an ∞ no. of solutions because it is always possible to multiply all BPM and corrector gains by an arbitrary scale factor !

SVD is used to solve the system and the smallest eigenvalues, associated to the singularities, are removed.

LOCO method (iv)

\square LOCO step 4 : update the model $(\rightarrow V)$ and parameter vector \mathbf{c}.
Since \boldsymbol{M} is not a linear function of quadrupole gradients,... the procedure must be iterated until the results converge.
\square The horizontal scales (BPMs + correctors) can finally be fixed using the horizontal dispersion, provided one knows the energy or RF frequency changes.

LOCO program (I)

- LOCO consists of a set of FORTRAN programs that interact with MAD
- Outline of the procedure:

1) The USER has to generate some input files :
> Measured response matrix
> Parameter definition file :

- BPM gains, quality flags, roll angles.
- Corrector names, kicks, flags, roll angles.
- MAD parameters : names, input values, increments.

2) LOCO automatically generates MAD scripts to
> loop through the correctors and "bump" each one in turn.
> loop through MAD parameters.
3) LOCO uses the MAD output to generate $\boldsymbol{M}^{\text {mod }}$ for all parameter settings.
4) The main LOCO program performs the fit.
5) LOCO automatically generates a new input command file from its output to prepare the next iteration.

LOCO program (ii)

\square I took over the software and made some modifications, respectively adapted it to fit with the SPS MAD sequence :

- single plane BPMs (I later learned that there was already a modified version to handle this...).
- added a flag (+ MAD command generation) to switch from a ring to a line.
- added a filter on the BPM gains to automatically reject very bad guys for the next iteration.
- added the possibility to renormalize the BPM and corrector gain scales between 2 iterations.
- wrote a program to generate simulated input from MAD data with BPM calibration errors and noise, corrector calibration errors.
- ...

Matrix sizes...

\square Consider a ring with \mathbf{N} BPMs and \mathbf{M} correctors per plane. The minimum size of matrix S is (only BPM + correctors to calibrate) :

- no coupling between H \& V :
- with coupling
$(2 \times N \times M) \times(2 \times(N+M))$
$(4 \times N \times M) \times(2 \times(N+M))$
\rightarrow SPS : $\mathrm{N}=113, \mathrm{M}=108 \quad \sim 49000 \times 442$
$\rightarrow 2210^{6}$ elements
$>$ LHC : $\mathrm{N}=500, \mathrm{M}=\sim 250 \sim 500000 \times 1500$
$\rightarrow 75010^{6}$ elements !!!

Memory + numerical accuracy (?) :
For very large machines, one has to restrict to a fraction of the correctors / split the data. There is anyhow some redundancy in the correctors..

SPS measurements

Measurement conditions in the SPS :

- LHC type beam on SC 538, injection at 26 GeV .
- Time in the cycle : $2010 \mathrm{~ms} / 66 \mathrm{GeV}$.
- Corrector kicks : +20 \& -20 μ rad ($\pm 2 \mathrm{~mm}$ peak orbit changes).
- Transparent measurement during physics.
- Tunes $=(26.76,26.83)$ - i.e. not our nominal tunes of $(26.62,26.58)$
- Bumped 18 correctors in H, 21 correctors in V.
- All bumped correctors in sextants $1 \& 2$.

Fit sequence

- Fit model input :
- The nominal SPS model with tunes of $(26.62,26.58)$ to "simulate" an optics error!
- Free strength parameters :
- QD, QF1 \& QF2 main quad strengths.
- 6 LQS (skew) quad strengths \rightarrow attempt to model the coupling
\square Fit sequence :
- 1 - Uncoupled fit to adjust each plane separately.
- 2 - Coupled fit with :
- Energy changes between + and - kick.
- Coupling (LQS).
- Corrector roll angles.
\square Results presented here : coupled fit without corrector roll.

BPM noise

The noise is estimated from the RMS position change over 14 reference orbits acquired during the 90 minutes of measurements :

- vertical $\quad \rightarrow$ excellent $-24 \mu \mathrm{~m}$ on average
- horizontal \rightarrow dominated by momentum fluctuations !
- does not include errors from non-linearities...(obviously !)

Orbit resolution
is $10 \mu \mathrm{~m}$!

Before fit...

Examples of "in plane" data : response θ^{+}- response θ^{-}
The large amplitude error is due to the orbit factor $\sin (\pi Q)$:

$$
\sin (26.6 \pi) / \sin (26.8 \pi) \sim 1.6
$$

Histogram : raw data

(*) + line : model , tunes = $(26.62,26.58)$

7 LOCO iterations later...

Agreement data-fit model :

- H plane : RMS difference $\sim 80 \mu \mathrm{~m} \rightarrow$ expect $140 \mu \mathrm{~m}$
- $\underline{\text { V plane }}:$ RMS difference $\sim 55 \mu \mathrm{~m} \rightarrow$ expect $34 \mu \mathrm{~m}$
$\sqrt{ } 2 \times$ noise

Fit tunes $=(26.762,26.826), \quad \sim$ no visible β-beating !

Histogram : gain corrected data
Empty bin \rightarrow BPM rejected

(*) + line : fit model with calibrated kick

Calibration factors

Calibration factors : $\quad 36$ out of 226 monitors rejected !!

- H plane : BPM gains (re)normalized to dispersion!

Corrector gains very low + large RMS.

- V plane : calibrations ~ OK.

Estimated BPM gain accuracy is $<1 \%$ in both planes! (<-- > splitting sample in 2 sub-samples - agrees with simulation)

Horizontal dispersion

The dispersion :

- not included in the fit, since it also depends on the bending (errors).
- can be used to check the model and set the BPM scale.

Data-fit :
\rightarrow Not a perfect match
\rightarrow Sextant dependent amplitude "beating"

Bend errors ?

Momentum fluctuations

Coupling V kicks \rightarrow H plane :

- reveals cycle to cycle momentum fluctuations
\rightarrow dominant effect, also for the "noise" estimate !
- RMS fluctuation is $\sim 310^{-5}$.

Coupling

Coupling H kicks \rightarrow V plane :

- systematic coupling visible.
- not perfectly "described" with the LQS quads - phase shift.
- correctors come in 2 "families", 90 degrees out of phase :
- family 1 : "larger" coupling
- family 2 : "smaller" coupling

Some things don't fit (yet)...

Coupling V kicks \rightarrow H plane :

- some correctors have poor fits (see below).
- large(r) BPM errors in H - does not help...

Vertical dispersion :

- predicted dispersion due to coupling is somewhat large.

Coupling test (i)

LQS simulation test :

- 3 LQS set to non zero strengths of 0.5 to $1.510^{-3} \mathrm{~m}^{-2}$.
- Simulated orbit response with MAD for ~ 20 correctors/plane.
- BPM calibration errors of 5%, cor. calibration errors of 2%, BPM noise of $30 \mu \mathrm{~m}$.

LOCO fit works perfectly - strengths accurate to < 4 10-5

Coupling test (ii)

Rolled quadrupole simulation :

- Rolled quad QF1.420 in LSS4 by 15 mrad (small D_{x}). LOCO fit result :
- It seems not possible to correct orbit coupling with LQS quads.
- Closest tune approach : CTA $=0.01 \rightarrow$ CTA $=0.004$
- CTA can be reduced to ~ 0.001 using coupling knob (real comp.) \rightarrow worse for the orbit coupling !

Strength stability

\square Estimate of the strength stability in the fits :

- split the corrector sample in 2 and refit separately

	$\mathrm{K}\left(10^{-2} \mathrm{~m}^{-2}\right)$	Max $\|\mathrm{dK}\|\left(10^{-2} \mathrm{~m}^{-2}\right)$
QD	-1.47026	$\mathbf{7 1 0 ^ { - 4 }}$
QF1	1.47326	210^{-4}
QF2	1.47329	1310^{-4}
LQS	0.04 to 0.11	$\mathbf{0 . 0 4}$

- QD \& QF : excellent
- LQS : larger changes - reflect the fit imperfections for coupling

Summary \& Outlook

\square LOCO works very well and already reveals interesting effects ...
\square Further analysis of this data:

- improve noise estimate (mainly H plane).
- check orbit coupling effects ...
- refit with corrector roll angles : for the moment LOCO clearly tries to compensate the imperfect coupling fit by rolling the H correctors in a strange fashion.
- ...
\square Test LOCO in the LHC transfer lines - the machinery is set up for TI8.
\square Test LOCO on TT10 ?
\square LHC.....

MD proposals

\square I will adapt the SPS orbit program to perform the measurements automatically (following a given corrector list).
\square (At least) 2 measurements under the same conditions :

- can probably be done parasitically to the physics program!
- gives an idea of the reproducibility.
\square Studies on the p2 cycle with LHC test beam :
- perform one reference measurement.
- create controlled beta-beat and re-measure.
- create controlled coupling and re-measure.
- other ideas ?
- 1 day should be sufficient for this program..
\square Tests on TT10?

Phase advance fits (i)

For measurements of the phase advance between BPMs using single kick/AC dipole techniques one could adapt the LOCO philosophy!
\square Consider :

- the vector \mathbf{m} holding the phase advance from one BPM to the next,

$$
\mathbf{m}^{\boldsymbol{T}}=\left(\Delta \mu_{1}, \Delta \mu_{2}, \ldots, \Delta \mu_{N}\right)
$$

- the difference vector $\Delta \mathbf{m}=\mathbf{m}^{\text {meas }}-\mathbf{m}^{\text {mod }}$ between the measured and the modeled phase advance.
\square We can define the sensitivity matrix \boldsymbol{S} of the phase advance on some parameters g_{j} (gradients...) :

$$
S_{i j}=\partial m_{i} / \partial g_{j}
$$

which can be evaluted from MAD in a similar fashion than for the orbit response...

Phase advance fit (ii)

\square To minimize the vector $\Delta \mathbf{m}$ we must solve the linearized equation :

$$
\Delta \mathbf{m}+\mathbf{S} \Delta \mathbf{g}=0
$$

which is again identical to the LOCO, orbit correction... equations.
\square Since the problem is again non-linear, we must update the model, $\mathbf{g} \rightarrow \mathbf{g}+\mathbf{D g}$, and iterate until it (hopefully) converges.
\square The advantage for LARGE machines is that the size of \boldsymbol{S} is :
(Number of BPMs x Number of gradients)
since the method does not depend on BPM and corrector magnet calibrations.

